

Installation manual

Title	DRIVE CT.
Type of documentation	Description, installation and startup of CT series digital drives with FM9 series asynchronous spindle motors.
Electronic document	man_drive_ct.pdf
Language	English
Manual reference	Ref.1509
Headquarters	Fagor Automation, S. Coop. B.º San Andrés 19, apdo. 144 CP. 20500 - Arrasate - Mondragón Gipuzkoa (Spain) www.fagorautomation.com info@fagorautomation.es
Customer support	+34 943 719200
Service Department	+34 943 771118

VERSION HISTORY

Document reference	Events
1109	First reference.
1507	Update connection diagrams.
1509	Error correction on connection diagrams.

Original instructions

All rights reserved. No part of this documentation may be copied, transmitted, transcribed, stored in a backup device or translated into another language without Fagor Automation's permission.

Responsibility exemption

The information described in this manual may be subject to changes due to technical modifications. Fagor Automation S. Coop. reserves the right to change the contents of this manual without prior notice.

The content of this manual and its validity for the product described here has been verified. Nevertheless, the information, technical or otherwise, in these manuals or in any other type of documentation is not guaranteed to be integral, sufficient or up to date.

Involuntary errors are possible, hence the absolute match is guaranteed. However, the contents of manuals and documents are regularly checked and updated implementing the pertinent corrections in later editions.

Fagor Automation S. Coop. will not be held responsible for any losses or damage, direct, indirect or by chance that could result from that information and it will be the user's responsibility to use it.

Responsibility and warranty claims are excluded in case of wrong usage of the unit in wrong environments or when not used for the purpose for which it has been designed, ignoring the warnings and safety indications given in this document and/or legal ones that may be applied to the work place, software modifications and/or repairs made by unauthorized personnel, damage caused by the influence of other nearby equipment.

Warranty

The warranty terms may be requested from your Fagor Automation representative or through the usual commercial channels.

Registered trademarks

All registered trade marks, even those not indicated are also acknowledged. When some are not indicated, it does not mean that they are free.

GENERAL INDEX

1	DESCRIPTION	5
	System configuration. General diagrams	6
	Stages of the system configuration	9
	Supplied accessories	10
_		
2		
	Presentation	
	Outside appearance	
	l echnical data	
	Connector layout	
З	OTHER MODULES	25
	SM-Kevpad	
	SM-SERCOS	
	EMC external mains filters	
	Braking resistors	
4	MECHANICS	
	Safety data	
	Planning the installation	
	Removing the terminal caps	
	Installation and removal of a resolution module	
	Installation and removal of a keyboard	
	Mounting methods	
	Coupling of the SPMD1403 and SPMC1402	
5	CABLES	43
	AC supply cable to external EMC filter	
	AC supply cable - or external EMC filter - to drive	
	Motor-drive power cable	
	Motor feedback cables	
	Direct feedback cables	
	Communication cable. SERCOS optical fiber	
	PC-DRIVE serial communication cable	50
c		= 4
0		
	Mains connection	
	AC supply requirements	
	Ground connections	
	Connection of external EMC filters	
	Connection of the line induction	
	Connection of the external braking resistors	58
	Connection of the heatsink fan supply	60
	Connection of 24 V DC control supply	
	Connection of low voltage DC power supply	61
	Connection of control and communication signals	
	-	
7	CONNECTION DIAGRAMS	79
	SP6402 drive with FM9-A100-C5Cx-E01 asynchronous motor	
	SP6402 drive with FM9-B113-C5Cx-E01 asynchronous motor	80
	SPMD1403-1S drive with FM9-A130-C5Cx-E01 asynchronous motor	
8	DIMENSIONS	
_		02
	UIIV03	

СТ

	Mains filters Chokes	. 85 . 86
9	SALES REFERENCE	37
	SP6402 compact drive	. 87
10		 89
	SP6402 compact drive SPMD1403-1S modular drive	. 89 . 90

СТ

1 DESCRIPTION

The CT drive system is ready to be used in industrial environments and together with the CNC can be used to regulate the control of movements and drives system of the machine. The configuration of the main CT servo drive system follows this general diagram:

The CT digital servo drive system has a modular stackable design.

They may be connected directly to three-phase mains of any kind, like TN-S, TN-C-S, TT or IT, with ground connection at any voltage like delta to neutral ground or, centered or in a corner and with a frequency of 50/60 Hz and a nominal voltage range of $380 - 480 \pm 10 \%$ V AC. This system supplies the electric motors with a three-phase voltage of 380 V AC and a variable frequency with which it will govern its speed.

Certain mandatory protection devices must be added between the mains lines and the CT servo drive system. Others may be optional. Which are:

Main switch	Mandatory
Fuses	Mandatory
Line reactor	Optional
Mains filters	Optional
Power switch	Mandatory

INFORMATION. The CT system has been manufactured in accordance with EN 60204-1 in compliance with European Directive 2006/95/EC on Low Voltage.

СТ

System configuration. General diagrams

See the schematic description of all the elements that make up the CT servo drive system:

Stages of the system configuration

The following steps are a reference to configure and install the CT system.

Note. This CT system configuration process assumes that the motors of the system are FM9 series motors of the Fagor catalog. These motors come with their manual "man_fm7_fm9_motors.pdf".

Example procedure

Stage 1. Analysis of the system location

- Ambient conditions
- Climate conditions
- Cooling conditions
- Mechanical conditions

Stage 2. Component selection

- Motor
- Drive module
- Other auxiliary modules (fuses, filters, inductances, braking resistors, etc.)

Stage 3. Installation and connections

- □ See the dimension drawings of the units
- **D** Calculate the size and ventilation of the electrical cabinet or enclosure.
- See connection diagrams
- □ Select power and signal cables
- Connect the motor/encoder
- Run the cables as recommended
- Connect the system to the power lines and to the auxiliary modules

1.

СТ

Supplied accessories

SP6402 compact drive

SPMD1403-1S modular drive (SPMD1403+SPMC1402)

Set (SPMC1402 rectifier + SPMD1403 inverter)

СТ

2 DRIVE MODULES

Presentation

CT drive models may be:

Drive model	Туре
SP6402	Compact drive
SPMD1403-1S	Modular drive consisting of: SPMD1403 (inverter)+SPMC1402 (rectifier)+NL402 (input reactor)

and the associated motors they will be governing are listed in the following table:

Motor model	Operating cycle	CT drive model
FM9-A100-C5Cx-E01	S1	SP6402
FM9-A100-C5Cx-E01	S6-40%	SPMD1403-1S *
FM9-B113-C5Cx-E01	S1	SPMD1403-1S **
FM9-B113-C5Cx-E01	S6-40%	SPMD1403-1S ***
FM9-A130-C5Cx-E01	S1	SPMD1403-1S
FM9-A130-C5Cx-E01	S6-40%	None

* If an SP6402 drive is installed with this motor to work in a S6-40% duty cycle, it is limited to an overload of 19% over the rated value of the motor for 4 minutes. ** Install this motor with an SP6402 drive only if the power demanded in a continuous cycle S1 does not exceed 110 kW. *** Limited to an overload of 24% over the rated value of the motor for 4 minutes in the S6-40% cycle. See the graphs later on.

2.

Outside appearance

СТ

Technical data

SP6402 compact drive

Rated power and current (power reduction for switching frequencies and temperature).

Max. continuous output current at ambient temperature 40°C (104°F)				
Ra po	ated ower	Max. continuous output current (in A) allowed at switching frequencies		
kW	CV	3 kW	4 kW	6 kW
110	150	210	174.8	129.7

2.

Max. continuous output current at ambient temperature 50°C (122°F)				
RatedMax. continuous output current (in A) allowed apowerswitching frequencies			n A) allowed at s	
kW	kW CV 3 kW 4 kW		6 kW	
110	150	190	157.9	116.2

Power dissipation

Power loss at ambient temp. 40°C (104°F) considering the current reduction under given
conditions.

Rated value		Communication baud rates		ates
kW	CV	3 kW	4 kW	6 <i>kW</i>
110	150	2192	2042	1888

Power loss at ambient temp. 50°C (122°F) considering the current reduction under given conditions.

Rated value		Communication baud rates		ntes
kW	CV	3 kW	4 kW	6 kW
110	150	1979	1851	1715

Power supply Requirements of the unit

Voltage	380-480 V AC ±10%
Nr. phases	3
Frequency	48-65 Hz

Power supply requirements of the unit's heatsink fan

Rated voltage	24 V	
Minimum voltage	23.5 V	
Maximum voltage	27 V	
Current demand	3.3 A	
Recommended power supply	24 V, 100 W, 4.5 A	
Recommended fuse	4 A (fast), (l²t < 20 A²t)	

Motor requirements

Nr. phases	3
Maximum voltage	480 V AC

Temperature, humidity and cooling method

Operating ambient temperature	Between 0 °C and 50 °C (32 °F and 122 °F). Note. An output current reduction must be applied at ambient temperatures over 40 °C (104 °F)
Minimum start-up temperature	- 15°C (5°F) Note. The power supply must be in cycle when the drive reaches 0°C (32°F)
Cooling method	Forced convection
Maximum humidity	95% non condensing at 40°C (104°F)

СТ

FAGOR

Storage

Long-term storage temperature	Between - 40°C and +50°C (- 40°F and 122 °F)
Short-term storage temperature	Between - 40°C and +70°C (- 40°F and 158°F)

Altitude

Range	Between 0 and 3000 m (9900 feet)*		
* Between 1000 and 3000 m (3300 and 9900 ft) over sea level, the given maximum output current value must			
be lowered 1% per every 100 m (330 ft) over 1000 n	n (3300 ft).		

Protection index

IP	20

* The SP6402 compact drive comes with a heatsink fan that meets IP 54. Contact Fagor Automation for more detailed information.

Corrosive gasses

Corrosive gas concentration must not exceed the levels shown in:

EN 50178	Table A2
IEC 60721-3-3	Class 3C1

This corresponds to the levels typical of urban areas with industrial activities and/or heavy traffic, but not in the immediate neighborhood of industrial sources with chemical emissions.

Vibration

Bump test.

Testing in each of three mutually perpendicular axes in turn.

Referenced standard	IEC 60068-2-29: Eb test:	
Severity	10g, 6ms, half sine	
Number of bumps	600 (100 in each direction of each axis)	

Random vibration test.

Testing in each of three mutually perpendicular axes in turn.

Referenced standard	IEC 60068-2-64: Fh test:
Severity	1.0 m²/s³ (0.01 g²/Hz) ASD from 5-20 Hz -3 dB/octave from 20 to 200 Hz
Duration	30 minutes in each of three mutually perpendicular axes.

Sinusoidal vibration test.

Testing in each of three mutually perpendicular axes in turn.

Referenced standard	IEC 60068-2-6: Fc test:
requency range	2 - 500 Hz
Severity	3.5 mm peak displacement from 2 to 9 Hz 10 m/s² peak acceleration from 9 to 200 Hz 15 m/s² peak acceleration from 200 to 500 Hz
Sweep rate	1 octave/minute
Duration	15 minutes in each of three mutually perpendicular axes.

СТ

Starts per hour

By electronic control: unlimited.

By interrupting the AC supply: \leq 20

Start up time

This is the time taken from the moment of applying power to the drive, to the drive being ready to run the motor: Its value is 4 s.

Output frequency / speed range ratio

Open-loop frequency range: 0 to 3.000Hz

Closed-loop speed range: 0 to 600 Hz

Closed-loop frequency range: 0 to 1250 Hz

Overall dimensions

- H Height including surface mounting brackets
- W Width
- **D** Forward panel projection when surface mounted
- **F** Forward panel projection when through-panel mounted
- **R** Rear panel projection when through-panel mounted

Н	W	D	F	R
1169 mm	310 mm	298 mm	200 mm	<i>≤</i> 98 <i>mm</i>
(46.01 in)	(12.205 in)	(11.732 in)	(7.874 in)	(3.858 in)

Approx. mass

kg	lb
75	165.3

Input current, fuse and cable size ratings

The input current is affected by the supply voltage and impedance.

Typical input current. The values of typical input current are given to aid calculations for power flow and power loss. These values are stated for a balanced supply.

Maximum continuous input current The values of maximum continuous input current are given to aid the selection of cables and fuses. These values are stated for the worst case condition with the unusual combination of stiff supply with bad balance. The value stated for the maximum continuous input current would only be seen in one of the input phases whereas the current in the other two phases would be significantly lower. The values of maximum input current are stated for a supply with a 2% negative phase-sequence imbalance and rated at the maximum supply fault current given in the table.

Supply fault current used to calculate maximum input currents

Symmetrical fault level 100 kA

Input rated current values, fuse and cable size

Typical	Maximum	Fus	Fuse Cable size		Cable		
input current	input current	IEC class gR	Ferraz HSJ	Input		Out	tput
Α	Α	Α	Α	mm²	AWG	mm²	AWG
247	258	315	300	2x70	2x2/0	2x70	2x2/0

Maximum motor cable length

Nominal 400 V AC voltage					
Maximum motor cable length a	Maximum motor cable length allowed depending on frequency				
3 kHz 4 kHz 6 kHz					
250 m (820 ft)	185 m (607 ft)	125 m (410 ft)			

2.

СТ

FAGOR

Braking resistor values

Minimum resistance values and peak power rating for the braking resistor at 40 $^\circ$ C (104 $^\circ$ F		
External resistor	Instantaneous power rating	
5 Ω (tolerance ±10%)	121.7 kW	

Tightening torque adjustments

Drive power terminal data				
AC	High current	Ground		
terminals	DC and braking	terminal		
M10 stud	M10 stud	M10 stud		
15 N (11.1 lb·ft)	15 N (11.1 lb·ft)	15 N (11.1 lb·ft)		

СТ

SPMD1403-1S (SPMD1403+SPMC1402) modular drive

Drive consisting of a rectifier (SPMC1402), an inverter (SPMD1403) and an input reactor (INL402).

Rated power and current (power reduction for switching frequencies and temperature).

SPMD1403. Max. continuous output current at ambient temperature 40 °C (104 °F) in slaved or unslaved SPMD drive				
RatedMax. continuous output current (in A) allowed at these switching frequencies				A) allowed at cies
kW	CV	3 kW	4 kW	6 kW
132	175	248	206	151

2.

SPMD1403. Max. continuous output current at ambient temperature 50°C (122°F) in slaved or unslaved SPMD drive

	Max. continuous output current (in A) allowed for these switching frequencies				
3 kW 4 kW 6 kW					
	224	186	137		

SPMC1402. Max. nominal values allowed					
Ambient temp. 35 °C/95 °F Ambient temp. 40°C/104°F				Ambient temp	. 50°C/122°F
Maximum input AC urrent	Maximum output DC current	Maximum input AC urrent	Maximum output DC current	Maximum input AC urrent	Maximum output DC current
A	Α	A	А	A	А
358	394	344	379	302	333

Power dissipation

Power loss in W of the docked SPMD drive at ambient temp. 40 °C (104 °F) considering the current reduction under given conditions.				
Ra va	ted lue	Switching frequencies		
kW	CV	3 kW	4 kW	6 kW
132	175	2930	3290	3120

Note. Power loss figures for the SPMD docked drives represent losses for the IGBT, rectifier and control master pod at the maximum current given.

Power loss in the current re	W of the undoc eduction under g	ked SPMD drive at a given conditions.	ambient temp. 40 °C (*	104 °F) considering
Rated value		Switching frequencies		
kW	CV	3 kW	4 kW	6 kW
132	175	2210	2570	2760

Note. Power loss figures for the SPMD undocked drive represent losses for the IGBT and control master pod at the maximum current given.

СТ

2.

Power loss in W of the docked SPMD drive at ambient temp. 50°C (122°F) considering the current reduction under given conditions.

Communication baud rates				
3 kW 4 kW 6 kW				
2930	2980	2810		

Note. Power loss figures for the SPMD docked drives represent losses for the IGBT, rectifier and control master pod at the maximum current given.

Power loss in W of the undocked SPMD drive at ambient temp. 50°C (122°F) considering the current reduction under given conditions.

Communication baud rates				
3 kW 4 kW 6 kW				
2210	2520	2520		

Note. Power loss figures for the SPMD docked drive represent losses for the IGBT and control master pod at the maximum current given.

Power loss of the SPMC1402 drive at ambient temp. 40/50 °C (104/122 °F)						
Max. losses 871 W						
Power losses from the front of the drive when through-panel mounted						
SPMD1403	≤ 300 W					
SPMC1402 ≤ 50 W						

Input line reactor power losses at ambient temp. 40/50 °C (104/122 °F)			
INL402	205 W		

Power supply Requirements

Voltage	380-480 V AC ±10%	
Nr. phases	3	
Frequency	48-65 Hz	

Power supply requirements of the heatsink fan of the SPMD

Rated voltage	24 V
Minimum voltage	23.5 V
Maximum voltage	27 V
Current demand	4.5 A
Recommended power supply	24 V, 5 A
Recommended fuse	6.3 A (fast), (I²t < 100 A²t)

Requirements of the external 24 V power supply of the SPMC

Rated voltage	24 V
Minimum voltage	23 V
Maximum voltage	28 V
Current demand	3 A
Minimum start up voltage	18 V
Recommended power supply	24 V, 100 W, 4.5 A
Recommended fuse	4 A (fast), (l²t < 20 A²t)

Note. If the SPM 24V power supply is used to supply the Unidrive SPMD or SPMC, no fuses are required.

Motor requirements

Nr. phases	3
Maximum voltage	480 V AC

Ref.1509

СТ

FAGOR

Temperature, humidity and cooling method

Operating ambient temperature	Between 0 °C and 50 °C (32 °F and 122 °F). Note. An output current reduction must be applied at ambient temperatures over 40 °C (104 °F)	
Minimum start-up temperature	- 15°C (5°F) Note. The power supply must be in cycle when the drive reaches 0°C (32°F)	
Cooling method	Forced convection	
Maximum humidity	95% non condensing at 40 °C (104 °F)	

Storage

Long-term storage temperature	Between - 40°C and +50°C (- 40°F and 122 °F)
Short-term storage temperature	Between - 40°C and +70°C (- 40°F and 158°F)

Altitude

Range			Betw	een 0	and 30)00 m (9	9900 feet)*	

* Between 1000 and 3000 m (3300 and 9900 ft) over sea level, the given maximum output current value must be lowered 1% per every 100 m (330 ft) over 1000 m (3300 ft). For example at 3.000m (9.900ft) the output current of the drive would have to be de-rated by 20%.

Protection index

IP	20	
* The SPMD modules drive comes with a bastainly for that maste ID 54 rating. Contact Forces Automation for		

* The SPMD modular drive comes with a heatsink fan that meets IP 54 rating. Contact Fagor Automation for more detailed information.

Corrosive gasses

Corrosive gas concentration must not exceed the levels shown in:

EN 50178	Table A2
IEC 60721-3-3	Class 3C2

This corresponds to the levels typical of urban areas with industrial activities and/or heavy traffic, but not in the immediate neighborhood of industrial sources with chemical emissions.

Vibration

Bump test.

Testing in each of three mutually perpendicular axes in turn.

Referenced standard	IEC 60068-2-29: Eb test:		
Severity	10g, 6ms, half sine		
Number of bumps	600 (100 in each direction of each axis)		

Random vibration test.

Testing in each of three mutually perpendicular axes in turn.

Referenced standard	IEC 60068-2-64: Fh test:
Severity	1.0 m²/s³ (0.01 g²/Hz) ASD from 5 - 20 Hz -3 dB/octave from 20 to 200 Hz
Duration	30 minutes in each of three mutually perpendicular axes.

Sinusoidal vibration test.

Testing in each of three mutually perpendicular axes in turn.

Referenced standard	IEC 60068-2-6: Fc test:
Frequency range2 - 500 Hz	
Severity	3.5 mm peak displacement from 2 to 9 Hz 10 m/s² peak acceleration from 9 to 200 Hz 15 m/s² peak acceleration from 200 to 500 Hz
Sweep rate	1 octave/minute
Duration	15 minutes in each of three mutually perpendicular axes.

2.

СТ

FAGOR

Starts per hour

By electronic control: unlimited.

By interrupting the AC supply: ≤ 20

Start up time

This is the time taken from the moment of applying power to the drive, to the drive being ready to run the motor: Its value is 4 s.

Output frequency / speed range ratio

Open-loop frequency range: 0 to 3.000Hz

Closed-loop speed range: From 0 to 40.000 rpm.

Closed-loop frequency range: 0 to 1250 Hz Limited to 600 Hz for best performance.

Acoustic noise

Maximum pressure level at 1m (dBA)				
	Max. speed Max. speed			
SPMD1403	75	43		
SPMC1402	53	43		

Overall dimensions

- H Height including surface mounting brackets
- W Width
- **D** Forward panel projection when surface mounted
- **F** Forward panel projection when through-panel mounted
- R Rear panel projection when through-panel mounted

	Н	W	D	F	R
SPMD1403	795.5 mm	310 mm	298 mm	202 mm	≤95 mm
	(31.319 in)	(12.205 in)	(11.732 in)	(7.953 in)	(3.740 in)
SPMC1402	399.1 mm	310 mm	298 mm	202 mm	≤95 mm
	(15.731 in)	(12.205 in)	(11.732 in)	(7.953 in)	(3.740 in)

Approx. mass

	kg	lb
SPMD1403	42	92.6
SPMC1402	20	44

Input current, fuse and cable size ratings

The input current is affected by the supply voltage and impedance.

Typical input current. The values of typical input current are given to aid calculations for power flow and power loss. These values are stated for a balanced supply.

Maximum continuous input current The values of maximum continuous input current are given to aid the selection of cables and fuses. These values are stated for the worst case condition with the unusual combination of stiff supply with bad balance. The value stated for the maximum continuous input current would only be seen in one of the input phases whereas the current in the other two phases would be significantly lower. The values of maximum input current are stated for a supply with a 2% negative phase-sequence imbalance and rated at the maximum supply fault current given in the table.

Supply fault current used to calculate maximum input currents				
Symmetrical fault level				
SPMD1403	100 kA			
SPMC1402	100 kA			

WARNING. Fuse protection must be provided at the power input.

2.

FAGOR

СТ

SPMD1403. Input rated current values, fuse and cable size								
Typical input	Maximum input	Maximum input DC current	um input Typical cable sec			ble secti	section	
DC current	DC current	for rated cable	class aR	D inµ	C but	Mo out	otor tput	
Α	А	V	А	mm²	AWG	mm²	AWG	
314	457	800	560	2x120	2x4/0	2x120	2x4/0	

Note. B2 type has been considered as cable installation method.

INFORMATION.

Fuse ratings are for a DC supply or paralleled DC bus arrangements. When supplied by a single SPMC or SPMU of the correct rating, the AC input fuses provide protection for the drive and no DC fuse is required.

SPMC1402. Input rated current values, fuse and cable size							
Maximum	Typical output	Semiconduct with H	Typical cable section				
input current	DC current	HRC IEC class gG UL class J		AC input		DC output	
Α	Α	Α	A	mm²	AWG	mm²	AWG
344	379	450	400	2x120	2x4/0	2x120	2x4/0

Note. B1 or C type has been considered as cable installation method.

INFORMATION. The cable sizes

Ť

The cable sizes noted in the previous table are typical cable sizes based on UL 508C and IEC 60364-5-52:2001. Maximum cable sizes are 2×240 mm² or 2×400 kcmil per pole. The user will have to decide what size of cable to use in any given application based on the local wiring regulations. Use of high temperature cables that are thinner than those stated maybe possible.

Nominal ratings of the line reactor INL402

Nominal ratings of the 400 V input line reactor INL402							
Current	Inductance	Overall width W	Overall depth D	Overall height H	Appro x. mass	Max. ambient temp.	Min. air flow
Α	μH	mm	mm	mm	kg	°C	m/s
339	44	276	200	225	36	50	1

Maximum motor cable length

Maximum motor cable length allowed depending on frequency					
3 kHz	4 kHz	6 kHz			
250 m (820 ft)	185 m (607 ft)	125 m (410 ft)			

Braking resistor values

SPMD1403. Minimum resistance values and peak power rating for the braking resistor at 40 $^{\circ}\text{C}$ (104 $^{\circ}\text{F}$)				
External resistor	Instantaneous power rating *	Average power for 60 s		
3.8 Ω (tolerance ±10%)	160 kW	160 kW		

* Continuous rating if drive is part of a common DC bus system.

2.

СТ

FAGOR

2.

Tightening torque adjustments

Drive relay and control terminal data			
Type of connection	Torque settings		
Plug-in terminal block	0.5 N·m (0.4 lb·ft)		

Drive power terminal data						
AC	High current	Ground				
terminals	DC and braking	terminal				
M10 stud	M10 stud	M10 stud				
15 N (11.1 lb·ft)	15 N (11.1 lb・ft)	15 N (11.1 lb·ft)				

* Torque tolerance: ±10%.

СТ

Connector layout

SP6402 compact drive

FAGOR 🗲

СТ

3 OTHER MODULES

SM-Keypad

Screen with LED indicators, inexpensive and with hot connection. It has two rows of 7-segment LED's. The top row shows the drive status or the menu and the number of parameters displayed. The bottom row shows the parameter value or a particular disconnection type.

SM-SERCOS

Solutions module to set SERCOS communication in the servo system. It is identified by its red color.

SERCOS option. Meets Class B. Speed, torque and position control modes supported at data speeds (bits/s): 2MB, 4 MB, 8 MB and 16 MB. Minimum network cycle time of 250 µs. Two high-speed test digital inputs at 1µs for position capturing.

СТ

EMC external mains filters

Mains filters	Drive
4200-6603	SP6402
4200-6315	SPMD1403-1S

Filter 4200-6603

Rated values

Data of external mains filter 4200-6603 (optional)						
Maxi DC ເເ	mum ırrent.	Rated	Protection degree	Power dissipation	Ground link	
at 40 °C (104 °F)	at 50°C (122°F)	voltage	IP	at rated current	Symmetrical Power supply (phase-phase and	Worst conditions
Α	Α	V		W	mA	mA
260	237	480	00	14.2	41.0	219

Note. The discharge resistance will be 1 $M\Omega$ in a star (Y) connection between phases with the tip of the star connected to ground through a 680 $k\Omega$ resistor (i.e. line to line 2 Ω , line to ground 1.68 $M\Omega$).

Overall dimensions

Approx. mass

H (height)	W (width)	D (depth)	kg	lb
135 mm (5.315 in)	295 mm (11.614 in)	230 mm (9.055 in)	5.25	11.6

For further detail, see dimensions section.

Tightening torque adjustments

Data of external mains filter terminal 4200-6603 (optional)							
Power supply connections Ground connections							
Max. cable section	Max. torque	Size of ground connection terminal	Max. torque				
70 mm²	12 N·m (8.8 lb∙ft)	М10	25 N∙m (18.4 lb.ft)				

Filter 4200-6315

Rated values

Data of external mains filter 4200-6315 (optional)							
Maxi DC ເເ	mum ırrent.	Rated	Protection degree	Power dissipation	Ground Iink		
at 40 °C (104 °F)	at 50°C (122°F)	voltage	IP	at rated current	Symmetrical Power supply (phase-phase and	Open circuit 1 phase	
Α	Α	V		W	mA	mA	
340		480	00		52.0	293	

Note. The discharge resistance will be 1 $M\Omega$ in a star (Y) connection between phases with the tip of the star connected to ground through a 680 $k\Omega$ resistor (i.e. line to line 2 Ω , line to ground 1.68 $M\Omega$).

Overall dimensions

Approx. mass

			Appi ox. mado	
H (height)	W (width)	D (depth)	kg	lb
136 mm (5.354 in)	339 mm (13.346 in)	230 mm (9.055 in)	5.5	12.11

For further detail, see dimensions section.

Tightening torque adjustments

Data of external mains filter terminal 4200-6315 (optional)						
Power supply connections Ground connections						
Max. torque	Size of ground connection terminal	Max. torque				
12 N·m (8.8 lb·ft)	M10	25 N·m (18.4 lb.ft)				

3.

СТ

Braking resistors

Braking takes place when the drive decelerates the motor or prevents it from running at higher speed for mechanical reasons. While braking, the energy of the motor returns to the drive. When the drive brakes the motor, the drive can absorb a maximum amount of regenerated power equivalent to its energy dissipating (loss) capability. When the power generated is likely to be greater than the losses, the DC bus voltage of the drive increases. In case of malfunction, the drive brakes the motor using the PI control that extends the deceleration time to prevent the DC voltage to rise above the reference value set by the user. If the drive is supposed to lower the speed of a load or retain an overhauling load, a braking resistor will have to be installed. The DC voltage at which the drive activates the braking transistor for the drive whose rated voltage is 400 V is 780 V.

Combination	of	braking	resistors	for	the	devices
-------------	----	---------	-----------	-----	-----	---------

Braking resistor model	Required Ohmage	Power that may be	Drive
RE/PR5R-11000	5Ω	11.0 kW	SP6402
RE/PR3.8R-13200	3.3 Ω	13.2 kW	SPMD1403-1S
RE/PR5R-33000	5Ω	33.0 kW	SP6402
RE/PR3.8R-40000	3.3 Ω	40.0 kW	SPMD1403-1S

Braking resistor sizing

The calculation data required to size the braking resistor needed for an application are:

Physical magnitudes	For example
Inertia *	1.479 kg·m²
Braking cycle	5 s every 30 s
Required braking time	5 s
Motor Power	100 kW
Drive power	110 kW
Rated motor torque (Mn)	636.6 N·m
Rated motor speed (nN)	1500 rpm
Operating voltage of the braking transistor for a rated voltage of the drive of 400 V	780 V DC bus voltage

* The inertia value to be considered is the one corresponding to the moving mass. If only the rotor of the motor is to be braked, only the motor inertia is taken into account. This example uses that of the FM9-A100-C5CD-E01 motor

1. Calculation of the maximum braking torque available.

M = 175 % *x Mn motor* (drive configured with closed loop control)

 $M = 1.75 \times 636.6 = 1114.05 \text{ N} \cdot m$

Note. The drive is assumed as the braking torque limiting device. Check the maximum motor torque to guarantee proper performance. A more powerful drive can control greater loads and, therefore, the maximum deceleration torque is higher.

2. Calculation of the minimum braking time possible to ensure that the braking time required by the application to stop de motor is longer.

 $M = J \cdot \alpha$ where:

Symb.	Description	Units
J	Motor inertia	kg∙m²
α	Angular acceleration	rad/s²

 $\alpha = \omega / t_b$ with:

Symb.	Description	Units
ω	Angular speed	rad/s
t b	Minimum deceleration time	S

plus, $\omega = 2\pi \cdot nN / 60$ with:

Symb.	Description	Units
nN	Rated motor speed	rev/min

3.

СТ

therefore:

$M = J \cdot \omega / t_b = J \cdot \pi \cdot nN / 30 \cdot t_b = 1.479 \times \pi \times 1500 / 30 \cdot t_b = 1114.05 \text{ N} \cdot m$

and therefore:

tb = 0.21 s is the minimum time the motor can be stopped and the time required by the application for braking, 5 s, is therefore within the specs of the 100 kW drive.

3. Torque and power needed for a required motor braking time of 5 s

 $M = 1.479 x \pi x 1500 / 30 x 5 = 46.46 N \cdot m$

and the power, therefore:

 $P = \pi x n x M / 30 x 10^3 = \pi x n x M / 30 x 10^3$ with:

Symb.	Description	Units
Ρ	Power	kW
n	Motor Speed	rpm
м	Max. braking torque	Nm

 $P = \pi x 1500 x 46.46 / 30 x 10^3 = \pi x n x M / 30 x 10^3 = 7.29 kW$

4. Braking resistance

 $P = V^2/R$

7.29 x10³ = 780²/R

 $R = 83.45 \Omega$ is the minimum braking resistance with a 110 kW drive.

The calculation is the result of assuming constant speed, but the speed gets lower as the movement of the load slows down. Therefore, the avarage power needed to obtain the resistance value is:

Paverage = 0.5 x $J \cdot \overline{\omega}^2 / t$

Paverage = $0.5 \times 1.479 \times (2 \times \pi \times 1500/60)^2/5 = 3.64 \text{ kW}$. This braking power is needed for 4 seconds every 30 seconds.

Assuming that the resistors admits (dissipates) this overload; then, for a continuous duty cycle:

 $P_N = 3.64x5/30 = 0.6 \, kW$ that is the power that would be required for instantaneous braking.

СТ

4 MECHANICS

This chapter describes how to use all the mechanical characteristics to install the drive. It must be installed inside an enclosure. Here are the most important characteristics:

- Through-the-wall mounting
- IP 20 as standard
- Enclosure size and mounting diagram
- Installation of the solutions module
- D Pin layout and torque adjustments
- Coupling of the SPMD1403 and SPMC1402
- Remote mounting of the main control unit

Safety data

WARNING. Using the instructions.

Follow the installation instructions for mechanical and electrical systems carefully. When in doubt, contact the supplier of the unit. It is up to the owner or user of the drive to ensure that the installation as well as maintenance and performance of the optional external units comply with the laws and practice codes of the country where they will be used.

WARNING. Up to the installer.

Only professional installers familiarized with safety and EMF requirements must install this drive. It is up to the installer to ensure that the final system or product complies with all the relevant laws of the country where it will be used.

WARNING. Unit lifting. The units weigh in kg (lb):

SP6402 compact drive \rightarrow 75 kg (165 lb) SPMD1403-1S modular drive consisting of (SPMD1403 + SPMC1402) \rightarrow [42 kg (92.6 lb) + 20 kg (44 lb)]

Planning the installation

Before installing it, bear in mind the following:

Access

Only authorized personnel must have access to it. It must comply with the safety regulations where it will be used. The protection index specs of the drive depend on the installation.

Environmental protection

The drives must be protected against:

- Humidity, including condensation, water leaks and water particles. An anti-condensation radiator may be needed; if so, it must be turned off when the drive is running.
- Contamination with electrically conductive material.
- □ Any dust type contamination that may hinder the performance of the fan or block air flow through several components.
- □ Higher temperatures than those indicated for operation and storage.
- Corrosive gasses.

Cooling

The heat generated by the drive must be removed without rising its running temperature too high. Cooling in closed enclosures worse than in ventilated fairings and, consequently, the cooling cycle may be longer and/or need internal air flowing fans.

Electrical safety

The installation must be safe both under normal conditions and in case of malfunction. Follow the electrical installation instructions of previous chapters.

СТ

Fire protection

The enclosure of the drive is not classified as fireproof Therefore, fireproof enclosure must be installed.

ElectroMagnetic Compatibility EMC

Variable speed drives are powerful electronic circuits that can cause electromagnetic interference if proper wiring is not carefully done during installation. Just take some precautions to prevent interference with industrial control units around. It is a must to respect the strict emission limits or take all the protections possible when knowing that there are other units sensitive to electromagnetic waves nearby. The drive has an internal EMF filter that reduces emissions under specific conditions. Extreme conditions may require an external EMC filter at the drive inputs that must be installed as close to it as possible. Besides room for the filters, certain distance is also required for independent wiring.

Dangerous areas

The drive must never be mounted in an area considered dangerous unless proper enclosure is installed and the installation is certified.

СТ

Removing the terminal caps

WARNING.

Insulation device. Before removing any lid of the drive or perform repairs, AC power must be removed from the drive using a proper insulation device.

WARNING.

Stored charge. The drive contains capacitors that stay charged with a potential deadly charge after removing AC power from the unit. If the drive has been connected to power, the AC power must be removed at least ten minutes before going on with the job. Usually, an internal resistor discharges the capacitors. However, on particular and rare failures, the capacitors may not discharge or it may not be possible to discharge them by applying voltage to the output terminals. If the malfunction causes the drive screen to turn off immediately; more than likely, the capacitors have not been discharged. In this case, contact your FAGOR representative.

SP6402 compact drive

This drive has three terminal caps: control, input and output. The following figure shows the location and identification of the terminal caps:

СТ

SPMD1403-1S modular drive (SPMD1403 + SPMC1402)

This drive has three terminal caps: control, input and output. The figure shows the location and identification of the terminal caps: Accessing all the terminals of the rectifier requires removing the terminal caps and that of the enclosure.

СТ

Removing the break points of the handguard and the DC terminal cap

СТ

Installation and removal of a resolution module

WARNING.

Power the drive down before installing/uninstalling the solutions module. Otherwise the product might break down.

To install the solutions module, press down in the direction shown in the figure until it fits in place.

To remove the solutions module, press up at the positions shown (A) and pull in the direction shown (B).

The drive lets you use the three slots for resolution modules at the same time as shown in the figure.

Note. The slots of the solutions module should be used in the following order: slot 3, slot 2 and slot 1.

СТ

Installation and removal of a keyboard

СТ

Mounting methods

The drives may be mounted on a surface or using a panel with proper mounting plates. The chapter on dimensions shows the dimensions of the units and the mounting holes for these methods for preparing the rear support plate.

Surface mounting consists in mounting the drive onto a wall or onto the rear plate of the enclosure. Through-panel mounting consists in securing the drive with the heatsink sticking out to the outside through the enclosure panel. This reduces the temperature inside the enclosure.

WARNING.

The heatsink can reach temperatures over 70 °C (158 °F) when the drive works with heavy loads for a certain amount of time. Do not touch the heatsink.

Drive lifting.

The approximate mass of the modules is: SP6402: 75 kg (165 lb) SPMD1403: 42 kg (92.6 lb), SPMC1402: 20 kg (44 lb) Use proper protections to lift these units.

SP6402 mounting bracket

Installation of the mounting bracket

The SP6402 drive uses the same brackets for surface mounting as for through-panel mounting. The mounting bracket has a long section and a short section.

The mounting bracket must be installed properly oriented with the long section inserted or fixed on the drive and the short section fixed to the rear plate. The figure shows the orientation of the bracket for surface mounting and for through-panel mounting.

СТ
Mounting SP6402 drives on a surface requires another two top mounting brackets. Both brackets must be installed on top of the drive, as shown in the figure. The bolts of the drive chassis must be tightened with a maximum torque of 10 N·m (7.4 lb ft).

SPMD1403 and SPMC1402 mounting brackets

Model size	Surface	Through-panel	Hole size
SPMD	le l	[⊗] x4	8.5mm (0.335in)
	le la	[⊘] x2	
SPMC	x1		8.5mm (0.335in)

Installation of the mounting brackets

Common brackets

The SPMD1403 and SPMC1402 drives use the same brackets for surface mounting as for through-panel mounting. The mounting bracket has a long section and a short section.

The mounting bracket must be installed properly oriented with the long section inserted or fixed on the drive and the short section fixed to the rear plate. The figure shows the orientation of the bracket for surface mounting and for through-panel mounting.

In through-panel mounting, the mounting brackets for the left side of the SPMD1403 module may be secured with the screws it comes with. This only applies to the bottom of the SPMC1402 rectifier. On the right side, the mounting brackets are only inserted into the slots of the drive chassis; they do not carry mounting screws.

СТ

Specific brackets

The following figure shows the surface mounting brackets for the SPMC1402 rectifier.

- 1. Common mounting bracket of the SPM unit: make sure that the short section is fixed to the rear plate.
- **2.** Power grounding clamp for the SPMC1402 rectifier: mounting the clamp requires 20 M10 screws 40 mm long (1.575 in) with vibration proof washers. Tightening torque 15 N·m (11.1 lb ft).
- 3. Power grounding clamp for the SPMC1402 rectifier motor.

3. Power grounding clamp for the SPMC1402 rectifier motor.

4. SPMC1402 rectifier surface mounting bracket: mounting the bracket requires M8 screws 20 mm long (0.787 in) with vibration proof washers. Tightening torque 9 N⋅m (6.6 lb ft).

The following figure shows the through-panel mounting brackets for the SPMC1402 rectifier.

1. Common mounting bracket of the SPM unit: make sure that the short section is fixed to the rear

2. Power grounding clamp for the SPMC1402 rectifier: mounting the clamp requires 20 M10 screws 40 mm long (1.575 in) with vibration proof washers. Tightening torque 15 N·m (11.1 lb ft).

СТ

plate.

4

Coupling of the SPMD1403 and SPMC1402

An AC input/output drive may be obtained by coupling the SPMC1402 module to an SPMD1403. This coupling offers several benefits:

- **D** Better enclosure mounting diagram
- □ Fewer cables

The coupling implies less air flow at the heatsink and affects the rated power of the drive. Check the rated power and current values (less power for switching frequency and temperature) in the technical data section of chapter 2.

Installation of the coupling kit

When installing an SPMD1403 and an SPMC1402 vertically, a coupling kit may be used to connect both modules electrically.

Note. When it is coupled with the SPMC1402 module, do not apply a current reduction to the SPMD1403 inverter. The rated power and current values (less power for switching frequency and temperature) are the same when coupled and when not coupled.

СТ

Terminal sizes and torque adjustments

WARNING.

In order to avoid fire risks and the no compliance with UL regulation, make sure to apply the specific tightening torque to power and ground terminals. See the following tables.

Relay and control terminal data (in all models)		
Type of connection	Torque adjustment	
Plug-in terminal block	0.5 N·m (0.4 lb·ft)	

Power supply termin		
AC terminals	High current and braking DC	Ground terminal
M10 stud	M10 stud	M10 stud
15 NºIII (11.1 ID'II)	15 N/III (11.110/II)	15 NºIII (11.1 ID'IL)

External EMC f			
External filter	rnal filter Power supply connections Ground connections		
	Max. torque	Terminal size	Max. torque
4200-6603	12 N·m	M10	12 N·m
4200-6315	12 N·m	M10	25 N∙m

СТ

Periodic maintenance

Cables

The drive must be installed in a cool, clean and well ventilated place not exposed to humidity or dust. The ensure unit and installation reliability, run the following periodic checks:

Environment	
Ambient temperature	Make sure that the enclosure temperature remains at or below the specified maximum temperature.
Dust	Make sure that the drive is dust free and dust does not accumu- late on the heatsink nor on the fan of the drive. The lifespan of the fan gets shorter in dusty environments.
Humidity	Make sure that there is no condensation in the drive enclosure.
Enclosure	
Enclosure door filters	Make sure that the filters are not blocked and air flows freely.
Electrical	
Screw connections	Make sure that all screw connections are tight.
Crimp terminals	Make sure that all crimp terminals stay tight and check for any discoloration which could indicate overheating.

Check that the cables are not damaged.

СТ

СТ

5 CABLES

Cable sizes are from IEC 60364-5-52:2001 table A.52.C with correction factor for 40 °C ambient of 0.87 (from table A52.14) for cable installation method B2 (multicore cable in conduit). Cable size may be reduced if a different installation method is used, or if the ambient temperature is lower. The recommended cable sizes above are only a guide. The mounting and grouping of cables affects their current-carrying capacity, in some cases smaller cables may be acceptable but in other cases a larger cable is required to avoid excessive temperature or voltage drop. Refer to local wiring regulations for the correct size of cables.

The recommended output cable sizes assume that the motor maximum current matches that of the drive. Where a motor of reduced rating is used the cable rating may be chosen to match that of the motor. To ensure that the motor and cable are protected against over-load, the drive must be programmed with the correct motor rated current.

Since capacitance in the motor cable causes loading on the output of the drive, ensure the cable length does not exceed the values given in the technical data tables. Use 105 °C (221 °F) (UL 60/ 75 °C temp rise) PVC-insulated cable with copper conductors having a suitable voltage rating, for the following power connections:

- AC supply to external EMC filter (when used)
- AC supply (or external EMC filter) to drive
- Drive to motor
- Drive to braking resistor

AC supply cable to external EMC filter

Drive model	Input cable	Meaning
SP6402	2x 4x70 mm²	2 shielded 4-wire cables with a 70
SPMD1403-1S	2x 4x120 mm²	model.

AC supply cable - or external EMC filter - to drive

Drive model	Input cable	Meaning
SP6402	2x 4x70 mm²	2 shielded 4-wire cables with a 70 or 120 mm^2 section depending on
SPMD1403-1S	2x 4x120 mm²	model.

СТ

Motor-drive power cable

Motor model governed for S1 duty cycle	Drive model	Power cable
FM9-A100-C5Cx-E01	SP6402	2x MPC-4x50
FM9-B113-C5Cx-E01	SPMD1403-1S	2x MPC-4x50 *
FM9-A130-C5Cx-E01	SPMD1403-1S	2x MPC-4x70

* For air room temperature 40 °C (104 °F) or less and installation method other than type B2 (under channels) according to EN 60204-1. Otherwise, install power cable 2x MPC-4x70.

Maximum length

INFORMATION.

The maximum length for the motor power cable MPC-4x for best performance must not exceed the values shown in the attached table.

Maximum motor cable length allowed depending on frequency.						
Drive model	3 kHz		4 kHz		6 kHz	
SP6402	250 m	820 ft	185 m	607 ft	125 m	410 ft
SPMD1403-1S	250 m	820 ft	185 m	607 ft	125 m	410 ft

Mechanical characteristics

MPC-4x ...

Туре	Shield. It ensures EMC compatibility.
Approx. Dmax	Cable MPC-4x50 → Dmax = 40.1 mm Cable MPC-4x70 → Dmax = 42.1 mm
Flexibility	High. Special to be used in cable carrying chains with a bending radius of 12 times the Dmax under dynamic conditions (when flexed) and 4 times the Dmax under static conditions.
Covering	PUR. Polyurethane resistant to chemical agents used in machine tools.
Temperature	Work: -10°C/80°C (14°F/176°F) Storage: - 40°C/80°C (-40°F/176°F)
Rated voltages according to IEC	Uo / U: 600/1000 V

СТ

Motor feedback cables

An FM9 motor encoder is connected to a CT drive through motor cable **EEC-SP-XX** plus an adapter cable **CA-EEC-CT**. FAGOR supplies both cables upon request with a connector at each end.

EEC-SP-XX cable

Sales reference

Range of EEC-SF The number indic	P-XX cables. cates their length i	n meters includin	g the connectors.	
EEC-SP-5	EEC-SP-15	EEC-SP-25	EEC-SP-35	EEC-SP-45
EEC-SP-10	EEC-SP-20	EEC-SP-30	EEC-SP-40	EEC-SP-50

Diagram

Mechanical characteristics

|--|

Туре	Overall shield. Shielded twisted pairs.
Approx. Dmax	8.5 mm
Flexibility	High. Special for controlling servo drives, with a minimum bending radius under dynamic conditions (when flexed) of 12 times the Dmax. (=100 mm).
Covering	PUR. Polyurethane resistant to chemical agents used in machine tools.
Temperature Work: 0°C/80°C (32°F/176°F) Storage: - 40°C/80°C (-40°F/176°F)	
Work voltage	U: 250 V

СТ

CA-EEC-CT adapter cable

Diagram

Mechanical characteristics

The mechanical characteristics of this adapter cable are identical to those of the EEC-SP-XX and have already given in this same section.

СТ

Direct feedback cables

With external incremental feedback

An external incremental feedback device (linear or rotary) with sinusoidal signals (1Vpp) or square (differential TTL) signals must be connected to a CT drive through a direct feedback cable EC-X PD plus the adapter cable CA-ECPD-CT. Fagor supplies both cables upon request with a connector at each end.

EC-X PD cable

Sales reference

Range of EC-X PD cables. The number indicates their length in meters including the connectors.					
EC-1 PD	EC-2 PD	EC-3 PD	EC-4 PD	EC-6 PD	
EC-8 PD	EC-9 PD	EC-10 PD	EC-12 PD		

Diagram

CA-ECPD-CT adapter cable

Diagram

· 47 ·

СТ

With external absolute feedback

An external absolute feedback device (SSI FAGOR) with sinusoidal signals (1Vpp) must be connected to a CT drive through a direct feedback cable EC-XB-D plus the adapter cable CA-ECXB-CT. Fagor supplies both cables upon request with a connector at each end.

EC-XB-D cable

Sales reference

Range of EC-> The number in	(B-D cables. Idicates their le	ength in meters	including the d	connectors.	
EC-1B-D	EC-3B-D	EC-6B-D	EC-9B-D		

Diagram

CA-ECXB-CT adapter cable

Diagram

FAGOR

СТ

Communication cable. SERCOS optical fiber

FAGOR supplies the fiber optic cables for SERCOS communications between the drive and the CNC in a ring connection and in lengths ranging from 1 to 100 meters. For SERCOS connection under 40 m, use the fiber optic cable with polymer core.

Sales references

Range of SFO-XX cables. The number indicates their length in meters.					
SFO-1	SFO-5	SFO-10			
SFO-3	SFO-7	SFO-12			
Range of SFO-FLEX-XX cables. The number indicates their length in meters.					
SFO-FLEX-10	SFO-FLEX-25	SFO-FLEX-40			
SFO-FLEX-15	SFO-FLEX-30				
SFO-FLEX-20	SFO-FLEX-35				

Maximum length

INFORMATION.

The maximum length for fiber optic cables of the references mentioned earlier for best performance is 40 meters.

Mechanical characteristics of the SFO-XX cable

Flexibility	Normal. It must only be used in systems under static condi- tions where the minimum bending radius is 30 mm. Use only in static conditions !
Covering	PUR. Polyurethane resistant to chemical agents used in ma- chine tools.
Temperature	Work: -20°C/80°C (-4°F/176°F) Storage: -35°C/85°C (-31°F/185°F)

Mechanical characteristics of the SFO-FLEX-XX cable

Flexibility	High. Special for cable-carrying chains with a minimum bend- ing radius, in dynamic conditions, is 70 mm. Use only in dynamic conditions !
Covering	PUR. Polyurethane resistant to chemical agents used in ma- chine tools.
Temperature	Work: -20°C/70°C (-4°F/158°F) Storage: -40°C/80°C (-40°F/176°F)

INFORMATION.

The SFO-FLEX-XX fiber optic cables are compatible with the SFO-XX cables. The SFO-FLEX-XX are more flexible.

Note. If the fiber optic cable for SERCOS communication between modules is going to be moving (dynamic conditions), always use the SFO-FLEX-XX cable. The SFO-XX cable will be enough for static conditions (resting). The useful life time of the SFO-XX cannot be guaranteed if it is installed in applications where it works under dynamic conditions (moving).

For SERCOS connection over 40 m, use the fiber optic cable with glass core.

Sales reference

Range of SFO-V-FLEX-XX cables. The number indicates their length in meters.					
SFO-V-FLEX-40	SFO-V-FLEX-60	SFO-V-FLEX-100			
SFO-V-FLEX-50	SFO-V-FLEX-75				

5.

СТ

Mechanical characteristics of the SFO-V-FLEX-XX cable

Flexibility The minimum bending radius will be 60 mm in dynam tions and 45 in static conditions.		
Covering PUR. Polyurethane resistant to chemical agents used chine tools.		
Temperature	Work: -40°C/80°C (-40°F/176°F) Storage: -40°C/80°C (-40°F/176°F)	

5.

PC-DRIVE serial communication cable

FAGOR supplies, upon request, the USB communication cable for CT Comms (CT Comms Cable USB-RS485) under the reference 4500-0096 to connect the drive to a PC. A CD Rom with the driver for it is also supplied together with the cable.

СТ

6 CONNECTIONS

Mains connection

The module is connected to mains through input terminals L1, L2 and L3 using two 4-wire shielded cables. They phases may be connected in any sequence.

· 51 ·

Supply types

These devices may be used with any type of supply, like TN-S, TN-C-S, TT or IT, with ground connection at any voltage like delta to neutral ground or, centered or in a corner. According to IEC 60664-1, these devices may be used with supply to Class III (or lower) facilities. This means that they may be permanently connected to the supply source indoors, but when installed outdoors, an additional over-voltage suppressor must be used (transient over-voltage suppression) to lower it from class IV to class III.

WARNING.

Operation with IT supply (not connected to ground). Special care must be taken when using internal or external EMC filters with a supply that is not connected to ground because if there were a ground leak in the motor circuit, the drive might not be disconnected and the filter could get overloaded. In this case, the filter cannot be used (uninstall it) or a separate protection must be used against motor ground leak. See the uninstalling instructions in the figure to remove the internal filter. For further information on ground leak protection, contact your FAGOR representative.

A ground leak in the supply will have no effect in this case. If the motor must continue running with a ground leak in its own circuit, an input isolating transformer will be needed and if an EMC filter is required, it must be located in the main circuit. Unusual risks are possible with supplies not connected to ground with more than one source; e.g. on ships. For further information, contact your FAGOR representative.

Line inductance

In principle, the SP6402 compact drive does not need a line reactor. Only when necessary, it will have to have one or more of its own reactors. Either three separate reactors or one three-phase reactor may be used.

Rated current of the reactor

The rated current of the line reactors must be:

- DC rated current. No less than the input DC rated current of the drive.
- Repetitive rated peak current. No less than twice the input DC rated current of the drive.

Rated values

See the technical data tables at the beginning of this manual.

СТ

FAGOR

Ground connections

The drive must be connected to the ground of the AC power supply system. Ground cables must meet local regulations and practice codes.

SP6402 compact drive

Motor supply and ground connections must be done through an M10 bolt located on top (supply) and bottom (motor) of the drive. See figure.

SPMD1403-1S modular drive (SPMD1403 + SPMC1402)

On SPMD and SPMC drives, motor supply and ground connections must be done through an M10 bolt located on top (supply) and bottom (motor) of the drive. See figure.

6.

Connection of protection fuses

Fuses or some other protection are required both at the AC supply input of the unit and at the rest of AC connections. The rated voltage of the fuse must match the supply voltage of the drive. See the recommended values of the protection fuses for each drive.

SP6402 compact drive

Input rated current values, fuse and cable size							
Typical Maximum	Fuse		Cable size				
input current	input current	IEC class gR	Ferraz HSJ	Input Output		put	
Α	Α	Α	Α	mm²	AWG	mm²	AWG
247	258	315	300	2x120	2x4/0	2x120	2x4/0

SPMD1403-1S modular drive (SPMD1403 + SPMC1402)

SPMD140	SPMD1403. Input rated current values, fuse and cable size.						
Typical input	/pical Maximum nput input	Maximum input	DC IEC fuse	Typical cable section			
DC current	DC current	for rated cable	class aR	lass aR DC input		Motor output	
Α	Α	V	А	mm² AWG		mm²	AWG
314	457	800	560	2x120	2x4/0	2x120	2x4/0

Note. B2 type has been considered as cable installation method.

SPMC1402. Input rated current values, fuse and cable size.							
Maximum	Typical Semiconductor fuse in series with HRC fuse Ty			pical ca	ble secti	on	
input current	DC current	HRC IEC Semiconductor class gG IEC class aR UL class J		A inj	C out	D out	C put
Α	Α	A	А	mm²	AWG	mm²	AWG
344	379	450	400	2x120	2x4/0	2x120	2x4/0

Note. B1 or C type has been considered as cable installation method.

WARNING.

AC supply of the drive must have fuses with the values shown in the technical data tables at the beginning of this appendix or the right protection against overload and short-circuits. Fire may be caused when not following these recommendations meticulously.

СТ

Connection of external EMC filters

Variable speed drives are powerful electronic circuits that can cause electromagnetic interference if proper wiring is not carefully done during installation. Just take some precautions to prevent interference with industrial control units around. It is a must to respect the strict emission limits or take all the protections possible when knowing that there are other units sensitive to electromagnetic waves nearby. The drive has an internal EMF filter that reduces emissions under specific conditions. Extreme conditions may require an external EMC filter at the drive inputs that must be installed as close to the drives as possible. Besides room for the filters, certain distance is also required for independent wiring.

SP6402 compact drive

6.

Use the recommended filter and shielded motor cable. See the mounting diagram in the figure. Make sure that the AC supply cables and ground cable are at least 100 mm away from the power module and the motor cable. Place sensitive signal circuits more than 300 mm (12 in) away from the power module.

Drive	External mains filter
SP6402	4200-6603

СТ

SPMD1403-1S modular drive (SPMD1403 + SPMC1402)

СТ

Connection of the line induction

Line inductance means including chokes on each of the three power lines. Its function is to reduce the harmonics generated in mains. The recommended value is given by the formula in (Y%):

$$L = \frac{Y}{100} \times \frac{V}{\sqrt{3}} \times \frac{1}{2\pi fI}$$

where:

Symb.	Description	Units
1	Input rated current of the drive	Α
L	Inductance	Н
f	Supply frequency	Hz
V	Voltage between lines	V

For an easier choice:

Drive	Line inductance
SP6402	IND SP6402

СТ

Connection of the external braking resistors

Braking takes place when the drive decelerates the motor or prevents it from running at higher speed for mechanical reasons. While braking, the energy of the motor returns to the drive. When the drive brakes the motor, the drive can absorb a maximum amount of regenerated power equivalent to its energy dissipating (loss) capability. When the power generated is likely to be greater than the losses, the DC bus voltage of the drive increases. In case of malfunction, the drive brakes the motor using the PI control that extends the deceleration time to prevent the DC voltage to rise above the reference value set by the user. If the drive is supposed to lower the speed of a load or retain an overhauling load, a braking resistor will have to be installed. The table shows the DC voltage at which the drive activates the braking transistor.

Rated voltage of the drive	DC bus voltage
400 V	780 V

WARNING. Protection against overload

When using an external braking resistor, an overload protection device must be installed in the circuit of the resistor.

If the braking resistor is to be mounted outside the enclosure, make sure to use a ventilated metal frame for these purposes:

- Avoid accidental contact with the resistor.
- Allow proper ventilation for the resistor.

When having to comply with EMC regulations, the cable used in external connections must be shielded because it sticks out of the metal enclosure. Internal connections do not require shielded cables.

СТ

Ref.1509

Minimum resistance and rated power. Models associated with the drives

Drive	External Ballast resistor			
	Min. braking resistance	RMS power	Sealing degree	Model
SP6402	5.0 Ω	11 kW	IP 29	RE/PR5R-11000
SP6402	5.0 Ω	33 kW	IP 29	RE/PR5R-33000

Typical protection circuit of the braking resistor

SPMD1403-1S modular drive (SPMD1403 + SPMC1402)

Minimum resistance and rated power. Models associated with the drives

Drive	External Ballast resistor			
	Min. braking resistance	RMS power	Sealing degree	Model
SPMD1403-1S	3.8 Ω	13.2 kW	IP 29	RE/PR3.8R-13200
SPMD1403-1S	3.8 Ω	40.0 kW	IP 29	RE/PR3.8R-40000

6.

СТ

FAGOR

Typical protection circuit of the braking resistor

Connection of the heatsink fan supply

The heatsink fan of the **SP6402** compact drive and that of the **SPMD1403** modular drive require an external 24 V DC power supply. The heatsink fan supply is connected at the top terminal block near the W phase output of the drive. The following figure shows the location of the heatsink fan supply connections.

6.

СТ

Connection of 24 V DC control supply

The 24 V DC input of the **SP6402** compact drive and that of the **SPMD1403** modular drive has three functions:

- It can be used to supplement the drive's own internal 24 V DC when several modules are being used and the current drawn by these modules is greater than the drive can supply. If too much current is drawn from the drive, the drive will initiate a 'PS.24 V' trip
- It can be used as a back-up power supply to keep the control circuits of the drive powered up when the line power supply is removed. This allows any fieldbus modules, application modules, encoders or serial communications to continue to run.
- It can be used to commission the drive when line power voltage is not available, as the display
 operates correctly. However, the drive will be in the UV trip state unless either line power or low
 voltage DC operation is enabled, therefore diagnostics may not be possible. Power down save
 parameters are not saved when using the 24 V back-up power supply input.

The working voltage range of the 24 V power supply is as follows:

- Max./min. continuous operating voltage: 30.0/19.2 V
- Nominal operating voltage: 24.0 V
- Minimum start up voltage: 21.6 V
- Maximum power supply requirement at 24 V DC: 60 W
- Maximum continuous operating voltage: 30.0 V
- Recommended fuse: 3 A, 50 V DC.

Minimum and maximum voltage values include ripple and noise. Ripple and noise values must not exceed 5 %.

MANDATORY. A 1 mm² cable should be used to for the 24 V DC control supply.

Connection of low voltage DC power supply

The **SP6402** compact drive and the **SPMD1403** modular drive can be operated from low voltage DC supplies, nominally 24 V DC (control) and 48 V DC (power). The low voltage DC power operating mode is designed either, to allow for motor operation in an emergency back-up situation following failure of the AC supply, for example in elevators; or to limit the speed of a servo motor during commissioning, for example a robot cell.

The working voltage range of the low voltage DC power supply is as follows:

- Min. continuous operating voltage: 36.0 V
- Nominal operating voltage: 48.0 V
- Max. braking IGBT turn on voltage: 127.2 V
- Max. over voltage trip threshold: 139.2 V

Minimum and maximum voltage values include ripple and noise. Ripple and noise values must not exceed 5 %.

MANDATORY. A 1 mm² (16 AWG) cable should be used to activate the low voltage mode.

СТ

Connection of control and communication signals

Control connections

SP6402 compact drive

General

Function	Qty	Available control parameters	Terminal Nr.
Differential analog input	1	Destination, offset, offset trim, invert, scaling	5, 6
Single ended analog input	2	Mode, offset, scaling, invert, destination	7, 8
Analog output	2	Source, mode, scaling	9, 10
Digital input	3	Destination, invert, select logic	27, 28, 29
Digital input/output	3	Input / output mode select, destination / source, invert, logic select	24, 25, 26
Relays	1	Source, invert	41, 42
Turn drive on (safe turn-off)	1		31
+10 V user output	1		4
+24 V user output	1	Source, invert	22
Common at 0 V 6			1, 3, 11, 21, 23, 30
+24 V external input	1		2

Destination parameter.Indicates the parameter that is being controlled by the terminal or
functionSource parameter.Indicates the parameter being output by the terminal.Mode parameter.Analog. Indicates the mode of operation of the terminal, e.g. voltage
0-10 V, current 4-20 mA etc.
Digital. Indicates the mode of operation of the terminal, e. g. positive
/ negative logic (the Drive Enable terminal is fixed in positive logic), open
collector.

Note that all analog terminal functions can be programmed in menu 7 and all digital terminal functions (including the relay) can be programmed in menu 8 from the application for PC: CTSoft.

WARNING.

The control circuits are isolated from the power circuits in the drive by basic insulation (single insulation) only. The installer must ensure that the external control circuits are insulated from human contact by at least one layer of insulation (supplementary insulation) rated for use at the AC supply voltage.

WARNING.

If the control circuits are to be connected to other circuits classified as Safety Extra Low Voltage (SELV) (e.g. to a personal computer), an additional isolating barrier must be included in order to maintain the SELV (Separated or **S**afety Extra-Low **V**oltage). classification.

WARNING.

 $\underline{\wedge}$

If any of the digital inputs or outputs (including the drive enable input) are connected in parallel with an inductive load (i.e. contactor or motor brake) then suitable suppression (i.e. diode or varistor) should be used on the coil of the load. If no suppression is used then over voltage spikes can cause damage to the digital inputs and outputs on the drive.

WARNING. Ensure the

Ensure the logic sense is correct for the control circuit to be used. Incorrect logic sense could cause the motor to be started unexpectedly. Positive logic is the default state for the SP6402.

СТ

Notes

Any signal cables which are carried inside the motor cable will pick up large pulse currents via the cable capacitance. The shield of these signal cables must be connected to ground close to the point of exit of the motor cable, to avoid this noise current spreading through the control system.

The safe torque off (safe disable) / drive enable terminal is a positive logic input only. It is not affected by the setting of the positive logic select parameter.

The common 0 V from analog signals should, wherever possible, not be connected to the same 0 V terminal as the common 0 V from digital signals. Terminals 3 and 11 should be used for connecting the 0 V common of analog signals and terminals 21, 23 and 30 for digital signals. This is to prevent small voltage drops in the terminal connections causing inaccuracies in the analog signals.

Default terminal functions

6.

СТ

• 64 •

FAGOR

СТ

Common to all models		
Resolution	10 bits + signal	
8	Analog input 3	
Default function	Motor temperature sensor input	
Type of input	Bipolar single-ended analog voltage, unipolar current or motor thermistor input	
Operating in voltage mode (by d	efault)	
Voltage range	± 9.8 V ± 3 %	
Maximum offset	± 30 mV	
Absolute maximum voltage range	± 36 V relative to 0 V	
Input resistance	> 100 kΩ	
Operating in current mode		
Current ranges	0 to 20 mA ± 5 %, 20 to 0 mA ± 5 % 4 to 20 mA ± 5 %, 20 to 4 mA ± 5 %	
Maximum offset	250 μΑ	
Absolute max. voltage (reverse bias)	- 36 V max.	
Absolute max. current	+ 70 mA	
Equivalent input resistance	Not greater than 200 \varOmega at 20 mA	
Operating in motor thermistor in	put mode	
Internal pull-up voltage	< 5 V	
Trip threshold resistance	$3.3 k\Omega \pm 10 \%$	
Reset resistance	1.8 kΩ ± 10 %	
Short-circuit detection resistance	50 Ω ± 30 %	
Common to all models		
Resolution	10 bits + signal	

Analog input T8 3 has a parallel connection with pin 15 of the drive encoder connector.

9	Analog output 1	
10	Analog output 2	
Default function of pin 9	OL > Motor frequency output signal CL > Speed output signal	
Default function of pin 10	Active motor current	
Output type	Bipolar single-ended analog voltage or unipolar current	
Operating in voltage mode (by d	efault)	
Voltage range	± 9.6 V ± 5 %	
Maximum offset	100 mV	
Maximum output current	± 10 mA	
Load impedance	1 k Ω min.	
Protection	35 mA max. Protection against short-circuit	
Operating in current mode		
Current ranges	0 to 20 mA ± 10 % 4 to 20 mA ± 10 %	
Maximum offset	600 µA	
Max. voltage without load	+ 15 V	
Max. load impedance	15 Ω	
Common to all models		
Resolution	10 bits + signal in voltage mode	
11	Common at 0 V	
Function	Common connection for all external devices	
21	Common at 0 V	
Function	Common connection for all external devices	

СТ

The drive enable terminal (T31) provides a SAFE TORQUE OFF (SAFE DISABLE) function. It meets the requirements of EN954-1 category 3 for the prevention of unexpected starting of the drive. It may be used in a safety-related application in preventing the drive from generating torque in the motor to a high level of integrity.

41	Relay contacts
42	

ОT

FAGOR

Default function	Drive OK indicator
Contact voltage rating	240 V AC, Installation over-voltage category II
Contact maximum current rating	2 A, 240 V AC 4 A, 30 V DC resistive load 0.5 A, 30 V DC inductive load (L/R = 40 ms)
Contact minimum recommended rating	12 V, 100 mA
Contact type	Normally Open (N. O.)
Default contact condition	Closed when power applied and drive OK is ok.
Update period	4 ms

MANDATORY.

A fuse or other over-current protection should be installed in the relay circuit.

СТ

Motor feedback connection

The motor feedback of FM9 spindles to be governed by CT servo drives is a sinusoidal encoder. The connection must be made between the connector of the motor feedback and the 15-pin HD Sub-D, F15 female connector of the drive through the EEC-SP feedback cable together with a CA-EEC-CT adapter cable. See figure.

For further detail on the cables supplied by FAGOR for connecting the motor feedback, see chapter on "cables". The technical data for the FM9 motor feedback connector is shown in the corresponding motor manual.

Connection of the terminals of the temperature sensor KTY84-130

The two wires of the KTY84-130 coming from the **CA-EEC-CT** adapter cable must be connected as shown in the following figure:

FAGOR

СТ

Motor over-temperature alarm parameter setting

Set parameter 00.21 (analog input mode T8 3) to "Volt" and set "th" (thermistor) as default value. This way, the analog input becomes a general purpose input and is no longer the thermistor input.

Generating the motor over-temperature alarm

With the connection shown, when the motor temperature reaches 130 °C (266 °F), the voltage at pin 8 goes down to 6.7 V. When a lower voltage is reached, it generates a motor over-temperature alarm and the display of the drive shows it as "external trip".

To set the motor over-temperature alarm, set the parameters of the drive as shown next.

Parameter settings for the analog I/O

07.18 (Destination of analog input T8 3) = 0 (Source of threshold detector 1).

Threshold detector parameter setting

12.03 (Source of threshold detector 1) = 07.03 (Destination of analog input T8 3)

12.04 (Threshold detector 1, threshold level) = 67 %

12.05 (Threshold detector 1 hysteresis) = 3 to 5 %

12.06 (Threshold detector 1, output invert) = 1 (On) (to detect lower levels than the threshold voltage)

12.07 (Threshold detector 1 destination) = 10.32 (External trip)

Direct feedback connection

There are two types of direct feedback: Either with external incremental feedback device or with external absolute feedback device. The drive must have the solutions module **SM-Universal Encoder Plus** installed. The connection between the external linear or rotary encoder and the female, 15-pin HD, Sub-D, **SK2** connector of this solution module must be made through the direct feedback cable and its corresponding adapter. See figure to locate the connector on the unit.

For further detail on the cable and adapter used to connect the direct feedback, see the chapter on "cables".

Encoder simulator connection

When the motor feedback is a sinusoidal encoder, the drive can generate a set of signals that simulate those of a differential TTL encoder attached to the rotor of the motor. The drive must have the solutions module **SM-Universal Encoder Plus** installed. The connection between the 8055 CNC (X1, X2, X3 or X4) / 8055i (X10, X11, X12 or X13) / 8065 / 8070 (Local Counter 1/2) and the 9-pin PL1 connector of the resolution module is done with the SEC-HD-CT cable of the encoder simulator. See figure to locate the connector on the unit.

For further detail on the cable used to connect the encoder simulator, see the chapter on "cables".

Connection for the reception of the analog command

The drive has an analog input in its 11-pin control connector to receive the analog velocity command from the CNC. (e.g. from connector X4 of the 8055i CNC).

6.

СТ

SERCOS ring connection

The SERCOS IEC 1491 interface is an international standard for digital communications between CNC's and servo drives of CNC machines.

The SERCOS communication ring integrates several functions:

- □ It carries the velocity command from the CNC to the drive in digital format with greater accuracy and immunity against outside disturbances.
- □ It carries the feedback signal from the drive to the CNC.
- □ It communicates the errors and manages the basic control signals of the drive (enables).
- □ It allows setting, monitoring and diagnosis of the parameters from the CNC with simple and standard procedures.

All this drastically reduces the hardware required at the drive, hence, making it more reliable.

Its open standard structure provides compatibility between CNC's and servo systems from different manufacturers on the same machine.

The different drive modules and the CNC are connected through SERCOS connector of the solutions module **SM-SERCOS** through optic fiber. See the chapter on cables in this manual.

Pin	Function	Description
1	OV	0 V connection for digital I/O
2	DI/PO	Digital input 0
3	DI/P1	Digital input 1
RX	Rx data	Optic "receive" input
ТХ	Tx data	Optic "send" input

Interconnection

Connect the drive to be governed by the CNC in the SERCOS ring.

- Connect on the fiber optic line, the Tx terminal of the drive with the IN terminal of the CNC.
- Connect the Rx terminal of the drive with the OUT terminal of the CNC.

When all these connections have been made, the ring will be closed.

СТ

With each drive, FAGOR supplies a fiber optic line to connect it to the CNC and, upon request, the rest of the required optical fiber. See the chapter on cables.

WARNING.

The bending radius of fiber optic cables SF0 and SF0-FLEX must always be more than 30 mm. For SF0-V-FLEX cables, this radius must be more than 60 mm.

Transmission speed (rate)

Meets class B. Speed, torque and position control modes supported at data speeds (bits/s): 2 MB, 4 MB, 8 MB and 16 MB. Minimum network cycle time of 250 μ s. Two high-speed test digital inputs at 1 μ s for position capturing.

Handling the optic fiber

FAGOR supplies the fiber optic cables with its terminals protected with a hood. Remove the terminal protecting hood before connecting any of these cables. Either to remove the terminal protecting hood or to connect and disconnect the cable, the cable must always be held by the terminal, never pull at the cable because it could get damaged. See figure.

6.

СТ
SERCOS connection with a FAGOR UC 8055

A drive is connected to a FAGOR 8055 CNC via SERCOS through the SERCOS DRIVES connector located on the front panel of the Central Unit. See figure.

SERCOS connection with a FAGOR 8055i CNC

The SERCOS connection of the FAGOR 8055i CNC will be made through the SERCOS DRIVES connector on the top rear of the module. See figure.

SERCOS connection with a FAGOR 8065 CNC

A drive is connected to a FAGOR 8065 CNC via SERCOS through the SERCOS DRIVES connector located on the right side of the module. See figure.

6.

6.

SERCOS connection with a FAGOR 8060 CNC

A drive is connected to a FAGOR 8060 CNC via SERCOS through the SERCOS DRIVES (B32) connector located on the right side of the module. See figure.

SERCOS connection with a FAGOR 8070 CNC

The FAGOR 8070 CNC is connected to the drives via SERCOS through the SERCOS DRIVES connector located on the right side of the module. See figure.

СТ

RS-232 serial line connection between a PC and the drive

This connection is necessary in order to establish communication between the applications for PC: CTSoft (parameter setting) and CTScope (real time oscilloscope) and the drive. The purposes of these applications are:

CTSoft application

The **CTSoft** application for PC is a configuration tool for drive setup and commissioning as well drive optimizing and monitoring. It makes it possible to:

- Easily configure the drive through its help system.
- Read, save and load the configuration parameters of the drive.
- Manage drive data.
- Display and edit the configuration with animated diagrams.

Note. This can also be done via keyboard and the display on the unit.

MANDATORY.

After installing and running the CTSoft program on your PC, don't forget to select, in the drive's properties window, the type of drive (e.g. SP64x2) and the "vector closed loop" mode.

Set up communication. Parameter setting

Communication setup must be done using the "communication options" button of the previous window.

Communication Settings	X
Protocol: CT-RTU	ОК
Hardware : COM1	
Baud Rate: 19.2 kb/s	Ad <u>v</u> anced
	V01.06.02
	Cancel

Make sure that the selected COMx serial port is the right one.

Keep the default configuration for the rest of parameters.

Check that the "basic configuration" on the 0 menu matches the following parameters:

Parameter	Description	Values
00,35	Serial mode	rtu
00,36	Baudrate	19200
00,37	Serial address	1

Now see how to access the parameter menus.

СТ

Parameter setting

The parameters must be set before executing the autotuning and each parameter is accessed from the parameter menus in the side window.

🕊 CTSoft Español - My Project - [My Drive - Menu O - Basic Setup (Offline)]			×				
File Edit Drive Wew Window Help			×				
[1] (2) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2							
Explorer 7 ×	Parameter	Description	Default	Memory	Units		^
	00.00	Parameter 0	0	0			(III
🚔 My Drive 🔛	00.01	Minimum reference clamp	0,0	0,0	RPM		18
	00.02	Maximum reference clamp	1500,0	1500,0	RPM		18
Parameters	00.03	Acceleration rate 1	2,000	2,000	s/1000 RPM		18
Menu 0 : Basic Setup	00.04	Deceleration rate 1	2,000	2,000	s/1000 RPM		18
Menu 1 : Speed references	00.05	Reference selector	A1.A2	A1.A2			18
- 🗮 Menu 2 : Ramps	00.06	Symmetrical current limit	1/5,0	175,0	%		18
Menu 3 : Speed Loop / Frequenc	00.07	Speed controller proportional gain (Kp1)	0,0300	0,0300	1/rad s-1		18
- I Menu 4 : Torque & Current Conte	00.08	Speed controller integral gain (Ki1)	0,10	0,10	1/rad		18
Menu 5 : Motor Control	00.09	Speed controller differential feedback g	0,00000	0,00000	5		18
Menu 6 : Sequencer & Clock	00.10	Optimut foregraphics	0,0	0,0	RPM		18
IIII Menu 7 : Analog I/O	00.11	Current magnitude	0,0	0,0	12		18
Manu S - Diatal I/O	00.12	Octive current	0,00	0,00			18
Menu Gularia Mark Diana Car	00.14	Torque mode selector	Speed	Speed			18
i Menu 9 : Logic, Mpot, binary Sun	00.15	Ramp mode select	Std	Std			
Menu 10 : Status and Trips	00.16	Ramp enable	On	Ûn			18
Menu 11 : General	00.17	Current demand filter 1	0.0	0.0	ms		18
Menu 12 : Thresholds & Brake Co	00.18	Positive logic select	On	On			18
- 📃 Menu 13 : Position Control	00.19	T7 analog input 2 mode	Volt	Volt			18
- I Menu 14 : User PID	00.20	T7 analog input 2 destination	1.37	1,37	menu.param		18
Menu 18 : Application	00.21	T8 analog input 3 mode	th	th			18
Menu 19 : Application	00.22	Bipolar reference enable	OFF	OFF			18
Menu 20 : Application	00.23	Jog reference	0,0	0,0	RPM		18
Manu 21 : Second Motor	00.24	Preset reference 1	0,0	0,0	RPM		18
	00.25	Preset reference 2	0,0	0,0	RPM		18
	00.26	Overspeed threshold	0	0	RPM		18
·	00.27	Drive encoder lines per revolution	1024	1024			18
Toolbox 4 X	00.28	Enable forward / reverse key	OFF	OFF			18
•	00.29	SMARTCARD parameter data previously loaded	0	0			1
Upload parameters	00.30	Parameter cloning	nonE	nonE			
1 m	00.31	Drive voltage rating	900	400	, v		
Download parameters	00.32	Paked arm autobara	210,00	210,00			
• • · · · ·	00.35	Raceu rpin autoculie	ő				
Reset drive	00.34	Serial mode	rtu.	et u			
	00.35	Baudrate	19200	19200			
Save parameters in drive	00.37	Serial address	1 1	1 200			
	00.38	Current controller Kn gain	150	150			
🔛 Save parameter file	00.39	Current controller Ki gain	2000	2000			
R Onen extended file		- Manual Basis Calus					-
er open parameter file	E My Unve	- Menu U - Basic Setup					
						Offine	1

Motor parameter setting

Parameter	Description
00,44	(05.09) Nominal voltage
00,46	(05,07) Nominal motor current
00,47	(05,06) Nominal frequency
00,45	(05,08) Nominal speed
00,42	(05,11) Number of motor poles = 4

Encoder parameter setting

Parameter	Description	
03,38	Drive encoder type = 7 SC.Hiper (SinCos [sine-cosine] with Hyperface)	
03,34	Lines per turn of the drive encoder = 1024	
03,39	Drive encoder termination selection = 1	
03,36	Drive encoder power supply voltage = 8 V	

Other parameter setting

Parameter	Description
00,02	(01,06) Maximum reference clamp. Maximum motor speed. At first, set it to a low value. Set it to the actual maximum speed of the motor after running the autotuning and make sure that the motor runs fine.
01,10	Bipolar reference enable = ON.
00,21	Analog input mode T8 3 = Volt. To avoid alarms due to lack of a thermistor.
11,31	User drive mode = CL VECt (vector closed loop). Make sure that this parameter is set this way, not in any other way.
02,04	Ramp mode selection = FASt (with braking resistor).

СТ

Ref.1509

FAGOR

After the changes, save parameters into the flash memory of the drive (press the button shown on the side menu of CTSoft) and then run the auto-tuning.

Auto-tuning

The auto-tuning is done through parameter 00,40.

There are two types of autotuning available:

While stopped	00,40=1
While turning	00,40=2

6.

Use the auto-tuning "while turning" whenever possible. It can only be performed when the motor is free, i.e. it is not mounted on the machine. If it is mounted on the machine, run the autotuning "while stopped".

To run the autotuning, follow these steps:

- Make sure that both the "run" signal (pin 26) and the "drive enable" signal (pin 31) are disabled. The display of the unit shows "inh".
- □ Set parameter 00,40=2.
- Activate the "run" signal (pin 26). The display of the unit shows "rdY".
- □ Activate the "run" signal (pin 31).

The motor then starts turning and the display shows "auto" and "tune" sequentially during the process.

At the end of the process, the motor stops, parameter 00,40 changes automatically to "0" and the display shows "rdY".

□ Turn the drive off and back on. The display now shows "run".

The drive is now on and the motor is ready to run.

СТ

CTScope application

The **CTScope** application is a full software-based oscilloscope to monitor and analyze the changing values of the drive. The time base may be set for a high-speed capture during setup or an intermittent (time lapse) capture to check long-term trends. The interface is based on a traditional oscilloscope that looks pretty familiar.

MANDATORY. Close the CTSoft program while running the CTScope program.

The drive comes with a standard serial communication port that supports two-wire EIA-485 communication.

The cable connection diagram is shown in the chapter on "cables" in this manual.

СТ

Ref.1509

WARNING.

safety extra low voltage (SELV) circuits.

Isolation of the serial communication port

The control PC must be connected to ground in order to meet IEC 60950 requirements on safety extra low voltage (IT units). As an alternative, on laptops or similar systems that do not have a ground connection, an isolation device must be added to the communications cable.

For further detail on the isolated serial communication cable, see the chapter on "cables" in this manual.

The serial communication port has double isolation and meets the requirements of EN 50187 for

7 CONNECTION DIAGRAMS

SP6402 drive with FM9-A100-C5Cx-E01 asynchronous motor

7.

СТ

SP6402 drive with FM9-B113-C5Cx-E01 asynchronous motor

7.

СТ

FAGOR 🗲

SPMD1403-1S drive with FM9-B113-C5Cx-E01 asynchronous motor

7.

· 81 ·

СТ

SPMD1403-1S drive with FM9-A130-C5Cx-E01 asynchronous motor

7.

FAGOR

СТ

8 DIMENSIONS

When designing and building the electrical cabinet, it is crucial to consider the necessary space to include the modules that will make up the servo system, auxiliary modules and other elements such as cables and connectors.

Drives

СТ

Mains filters

Filter 4200-6603

Filter 4200-6315

8.

СТ

FAGOR

Chokes

Inductance IND SP6402

External braking resistors

СТ

9 SALES REFERENCE

SP6402 compact drive

9.

СТ

SPMD1403-1S modular drive

SPMC1402 rectifier + SPMD1403 inverter + INL402 input line reactor

9.

СТ

10 CHARACTERISTICS PLATE

SP6402 compact drive

SPMD1403-1S modular drive

10.

· 90 ·

FAGOR

СТ

Fagor Automation S. Coop.

B^o San Andrés, 19 - Apdo. 144 E-20500 Arrasate-Mondragón, Spain Tel: +34 943 719 200 +34 943 039 800 Fax: +34 943 791 712 E-mail: info@fagorautomation.es www.fagorautomation.com

